Koch Filter Corporation's MicroSafe Antimicrobial-Treated Air Filters are designed for effective control of molds, bacteria, mildew and other airborne microorganisms. The antimicrobial treatment utilized in all MicroSafe products is a specialized antimicrobial agent designed to effectively control microbial growth such as fungus, mold, mildew and bacteria on contact.

A wide range of Koch products are available with the antimicrobial treatment including MicroSafe Extended Surface Pleated Panels, MicroSafe Synthetic Filter Media and high efficiency BioMAX HEPA filters. See reverse for a detailed listing of MicroSafe products.

This large product offering, in tandem with the capability to control such a wide spectrum of microorganisms, make MicroSafe Antimicrobial-Treated Air Filters an excellent frontline component in the overall effort to improve Indoor Environmental Quality.

Applications

MicroSafe Antimicrobial-Treated Air Filters are designed for use in any HVAC system, and are ideal for control of microorganisms in hospitals, nursing homes, laboratories, and commercial buildings of all types.
MicroSafe™ Antimicrobial Performance Data

Living E. coli organisms on non-treated material

Non-living E. coli organisms on treated material

MicroSafe™ Antimicrobial Treatment is available on the following products:
- BioMAX CS
- BioMAX HEPA
- BioMAX V-2000
- Duo-Cube
- Duo-Pak 40
- DuraMAX 2v
- DuraMAX 4v
- Maxi-Grid
- MicroMAX
- MicroSafe ES
- Multi-Cell
- Multi-Flo
- Multi-Sak
- Synthetic Air Filter Media

- MERV 4 through 16 performance rating.

Data projected from tests conducted by an independent testing laboratory.

ANTIMICROBIAL-TREATED - VS - UNTREATED MEDIA (MICROCOCCUS LUTEUS)

1) Performance data based on ASHRAE 52.2-2007 test standards.
2) UL Class 1 and 2 standard 900.

Regional Sales Offices/Distribution Centers
Atlanta, GA • Detroit, MI • East Greenville, PA* • Houston, TX* • Indianapolis, IN
Kansas City, MO • Louisville, KY* • Madbury, NH • Nashville, TN • Rancho Cucamonga, CA*

*Denotes manufacturing site.